Phytobiomes: A whole-system approach to advancing plant agriculture

Gwyn Beattie
Buchanan Distinguished Professor of Bacteriology
Chair, American Phytopathological Society
Public Policy Board

Iowa State University
Plant Pathology and Microbiology
Global Grand Challenge
To sustainably feed the world
To feed a global population of 9.6 billion in 2050

Need 70% more food (based on calories)

World Summit on Food Security (2013)
Doubling global crop production by 2050 will require ~2.4% increase per year in yields.

GLOBAL YIELD GROWTH RATES (%)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>1.8</td>
<td>2.2</td>
</tr>
<tr>
<td>Wheat</td>
<td>0.5</td>
<td>3.0</td>
</tr>
<tr>
<td>Rice</td>
<td>1.0</td>
<td>2.2</td>
</tr>
<tr>
<td>Soybeans</td>
<td>1.1</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Develop concepts that can contribute to doubling the amount of safe and nutritious food by 2050

→ Time is right for a systems approach
Phytobiomes: Systems in Context

Micro- and Macroorganisms
- Viruses
- Archaea
- Bacteria
- Amoeba
- Oomycetes
- Fungi
- Algae
- Nematodes

Plants

Arthropods, Other Animals and Plants
- Insects
- Arachnids
- Myriapods
- Worms
- Birds
- Rodents
- Ruminants
- Weeds

Their environment

Soils

All of the associated organisms

Biological and Environmental Context

Climate
Phytobiomes: Systems in Context

Management Context

Crop choices
- Species
- Cultivar
- GMO/Non-GMO
- Monoculture
- Cover crops
- Crop rotations

Site choices
- Irrigation
- Tile drainage
- Livestock Mgt

Inputs
- Application methods
- Timing
- Herbicides
- Insecticides
- Organic/Inorganic fertilizers
- Fungicides

Till/No-till
- Planting time
- Harvest time
Phytobiomes - plants, their associated organisms, and their environment
Plant systems vs. Phytobiomes

Plant systems focus on a plant and then determine the interactions of that plant with all other components.

Phytobiomes focus on a plant ecosystem that may involve any number of different types of plants, organisms, and environmental components.

→ use information on all components and their interactions to identify the best plant(s) to grow at a given site in a given period.
Achieve sustainable crop productivity through a systems-level understanding of diverse interacting components.
Origin of the Phytobiomes Roadmap

- American Phytopathological Society meetings (2014-15)
- Interdisciplinary participants from academia, industry and government in
 - Workshop: Phytobiomes 2015 - Designing a new paradigm for crop improvement (>200 participants)
 - Interdisciplinary writing team
- Comments from the public and organizations endorsing the Roadmap
The Phytobiomes Roadmap has been endorsed by:
Reductionist approach to biology and agricultural science: Understand each component individually.

Reality: biological systems are complex and non-linear in their organization and regulation.
Develop a foundation of knowledge

Translate that knowledge into application
Why now?
Convergence of need & opportunities

- Technological advances in Precision crop management systems
- Probing and understanding phytobiome components
- Big Data Analytics
Advances in assessing phytobiome components

Genome-enabled technologies
Computational biology and modeling

- **Amplicon sequencing**
 - PCR amplify (16S-18S rRNA, ITS, cpn60)
 - Species (taxa) number, abundance, composition
 - “Who is there?”

- **Metagenome sequencing**
 - Community function
 - “What can they do?”

- **Meta-transcriptome sequencing**
 - Community activity
 - “What are they doing?”

- **Metaproteome analysis**
- **Metabolome analysis**
Advances in precision management strategies in agriculture

Mid-1990’s: global positioning systems
Big data analytics
What genetic linkages connect phytobiome components?
→ Breed plants that select for beneficial communities

What constitutes a “healthy phytobiome”?
→ Develop biologicals and predictors of crop and soil health
What are the **mechanisms** by which specific management practices promote ecosystem health?

→ *Design novel or improved management practices*

Can we exploit **predictive and prescriptive analytics** to design site-specific solutions to environmental challenges?

→ *Incorporate biological information into the next generation of precision agriculture technologies*
The Phytobiomes Roadmap Offers ...

A strategic plan
Phytobiomes Roadmap identifies:

- Major gaps in
 - Knowledge
 - Technology
 - Infrastructure

- Challenges in educating and training a future workforce

- Short-, mid- and long-term actions and goals for the future
Actions

- Forming linkages among disciplines to recruit a broad base of expertise to the field of phytobiomes
- APS is launching a new, open-access journal
- Advocating for *new* support for phytobiome research
Actions

- Establishing the International Alliance for Phytobiomes Research, a public-private alliance to enhance interdisciplinary networks

 Executive Director: Kellye Eversole

- Working to attract and strengthen a cross-trained workforce
Outcomes of this new vision for agriculture

Managed or engineered phytobiomes that promote:

- Effective rehabilitation of degraded and depleted lands worldwide

*1.5 billion people depend on degraded lands for survival!

Source: UNEP
Managed or engineered phytobiomes that promote:

- Increased resilience of our cropping systems to pests, pathogens, water and nutrient limitation
- Pest control practices that are best suited for sustainable productivity
- Full integration of biologicals into site-specific crop management – moving us to the next-generation precision agriculture
Outcomes of this new vision for agriculture

- Adaptive, **data-driven, on-farm systems** for managing phytobiomes for optimal productivity

- **Increased profitability** of sustainable food production to enable growers to meet demand

www.linkedin.com/pulse/foreign-affairs-precision-agriculture-revolution-ulrich-adam
Future Events

http://www.keystonesymposia.org/17S2