Methylo trophs for Sustainable Agriculture
PAG XXV – Exploring Phytobiomes Workshop

Janne Kerovuo, Ph.D.
Leadership Team

Tom Laurita
President and CEO, ex-Monsanto

Stephen Kahn
Sr. Vice President and CFO, ex-Advent Int'l

Janne Kerovuo PhD
Vice President Research and Discovery, ex-Monsanto

Desmond Jimenez PhD
Vice President Product Development, ex-Bayer

C. Michael McFatrich
Vice President Business Strategy & Development, ex-BASF
Scientific Advisory Board

James Carrington PhD
Chairman SAB, President of Donald Danforth Plant Science Center, St. Louis, MO Member-National Academy of Sciences

Douglas Cook PhD
Professor, Dept of Plant Pathology, UC Davis, California

Steven Lindow PhD
Professor, UC Berkeley Exec Assoc Dean, College of Natural Resources, Berkeley, CA Member-National Academy of Sciences

Alan Gould PhD
Director, Verdant Partners, Former Director Biotechnology at Dow Agrosciences
Microbials and the Future of Agriculture

- Challenge: adoption of sustainable agricultural technologies to feed 9 BB people

- New GM crop costs 10 years and $150 MM

- New Ag chemical costs 12 years and $250 MM

- Microbial solutions have accelerated path-to-market

- Mainstream Agriculture embraces Microbials as major disruptive technology and growth opportunity
Microbiome – “Second Plant Genome”

PHYLLOSHERE
A plant’s leaves and stems can have up to 10 million microbes per square centimeter

ENDOSPHERE
Endophytic populations can reach up to 10 million microbes per gram of tissue

RHIZOSPHERE
1 gram = up to 10 billion microbes and up to 30,000 different species
Microbial Plant Enhancement “Traits”

- Phytohormones
 - IAA production
 - ACC deaminase
 - Acetoin, 2,3 butanediol etc.
- Biotic stress mitigation
 - Induced Systemic Resistance
 - Biopesticidal compounds etc.
- Abiotic stress mitigation
 - Drought (WUE, increased rooting, ABA), temperature, salinity
 - Reduction of ROS
- Nutrient acquisition
 - Phosphate solubilization
 - Nitrogen fixation
 - Iron scavenging etc.

Bulgarelli et al. (2013)
NewLeaf Symbiotics Strategy

- Methylotroph-based Microbial products as drop-in solutions for sustainable agriculture
- Methylotrophs are ubiquitous colonizers of plants (phylloplane, rhizosphere, endosphere)
- Rich in Plant Enhancement “Traits”
- Discover and Develop the best fit strain(s) to each product concept (crop, BioYield, BioControl, application method)
NewLeaf Is Mining a Rich Vein

- ~1,500 Methylotrophic strains from roots, leaves and endosphere of wild crops (~7,000 strain by end 2017)
- All genomes sequenced, assembled and annotated
- Plant enhancement “trait” discovery rate is very high
- Very “productizable” for non-spore formers
Methylo troph Pan-genome Analysis

- Typical Methylo troph genome
 - ~ 5,200 genes per genome
 - 54% genes with assigned function
 - 46% genes no assigned function (70% of gene clusters no assigned function)

- Align all protein sequences from all genomes against themselves

- Cluster genes around protein homology
 - Core genes: >= in 95% genomes
 - Shell genes: in multiple genomes
 - Cloud genes: in only few or one genome

Graph clustering using Markov chain and flow simulation (MCL).

Genes Over Genomes

M. populi, 30 genomes

Cloud: 12,906 (64%)
Shell: 5,021 (25%)
Core: 2,226 (11%)

M. extorquens, 500 genomes

Cloud: 102,217 (94%)
Shell: 4,667 (4%)
Core: 1,721 (2%)

Methylobacterium, 1000 genomes

Cloud: 170,814 (96%)
Shell: 6,789 (4%)
Core: 1,054 (0%)

Key
- Conserved genes
- Total genes
Gene Presence Phylogeny

- Pan-genome enabled analysis
- Identify uniquely all genes over all genomes
- Use genes presence/absence to infer distance
- Protein sequences cluster agnostically to function
- Sufficient phenotype data allows genes/traits linkage identification
Prescriptive Biologics Knowledge Base™

- Standardize, store all primary and meta-data from all NLS data sources
- Critical mass of experimental results enables predictions, prescriptions
- \textit{In silico} phenomics – hypothesis driven experiments
- Deciphering Phenotype x Genotype x Environment
NewLeaf R&D Workflow

Microbial Genotyping

Strain Phenotyping

In Planta Phenotyping

Bioinformatics Analysis

Field Trials
US Field Trial Locations

- Corn & soya
- W-wheat, corn & soya
- W-wheat
- S-wheat & soya
- Peanut
Colonization of Plant from Seed
Suppression of Fungal Pathogens

Head Blight - Wheat

- Untreated check
- Microbial treatment

Grey Leaf Spot - Corn

- Untreated check
- Microbial treatment
Increase of Yield Over Locations x Years

2015/16 Soy Seed Treatment
(14 locations; over locations x years)

- UTC: 61.5
- Strain A: 63.0
- Strain B: 64.5
- Strain C: 65.0

2015/16 Corn in-furrow Application
(14 locations; over locations x years)

- UTC: 206
- A: 210
- B: 218
- D: 220
Mitigation of Agricultural Pests

Lead CRW biocontrol strain delivered:
- ~13 bushel per acre advantage across two years
- ~60% reduction in root damage across two years
- Comparable to in-furrow chemical insecticide (pyrethroid)

Lead strain offer an Integrated Pest Management option
Modification of Microbiome

Untreated check

Microbial treatment (significant yield advantage)
Combination of Lead Strains

- Lead strains provide over seven bushel advantage to the check
- Combination of lead strains with strain E provide additional over seven bushel advantage
- Stand retention delivers yield; resistance to lodging delivers “harvestable” yield at high planting rates

![2016 Corn in-furrow Application (across two locations)]
Production and Formulation

- Production patent granted in 2015 provides a unique position (US Patent 9181541)

- Scaling from pilot scale to 100,000L production in 2017

- Formulations are drop-in solutions with current agronomic inputs (traits, chemistries, fertilizers, practices)

- First sales revenue in US markets in 2017
Acknowledgements